Development of modified siRNA molecules incorporating 5-fluoro-2′-deoxyuridine residues to enhance cytotoxicity

نویسندگان

  • Shao-yu Wu
  • Tian-min Chen
  • William H. Gmeiner
  • Edward Chu
  • John C. Schmitz
چکیده

Therapeutic small interfering RNAs (siRNAs) are composed of chemically modified nucleotides, which enhance RNA stability and increase affinity in Watson-Crick base pairing. However, the precise fate of such modified nucleotides once the siRNA is degraded within the cell is unknown. Previously, we demonstrated that deoxythymidine release from degraded siRNAs reversed the cytotoxicity of thymidylate synthase (TS)-targeted siRNAs and other TS inhibitor compounds. We hypothesized that siRNAs could be designed with specific nucleoside analogues that, once released, would enhance siRNA cytotoxicity. TS-targeted siRNAs were designed that contained 5-fluoro-2'-deoxyuridine (FdU) moieties at various locations within the siRNA. After transfection, these siRNAs suppressed TS protein and messenger RNA expression with different efficiencies depending on the location of the FdU modification. FdU was rapidly released from the siRNA as evidenced by formation of the covalent inhibitory ternary complex formed between TS protein and the FdU metabolite, FdUMP. These modified siRNAs exhibited 10-100-fold greater cytotoxicity and induced multiple DNA damage repair and apoptotic pathways when compared with control siRNAs. The strategy of designing siRNA molecules that incorporate cytotoxic nucleosides represents a potentially novel drug development approach for the treatment of cancer and other human diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic enhancement of 5-fluorouracil cytotoxicity by deoxyuridine analogs in cancer cells

5-Fluorouracil (FU) is a halogenated nucleobase analog that is widely used in chemotherapy. Here we show that 5-hydroxymethyl-2'-deoxyuridine (hmUdR) synergistically enhances the activity of FU in cell lines derived from solid tumors but not normal tissues. While the cytotoxicity of FU and hmUdR was not directly related to the amount of the modified bases incorporated into cellular DNA, incubat...

متن کامل

THEORETICAL STUDIES OF CHANGES IN PROPERTIES OF 5-FLUORO-2-DEOXYURIDINE (FUDR) ANTICANCER DRUG BY ADSORPTION ON BORON NITRIDE NANOTUBE (5, 5-11)

Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of dr...

متن کامل

Effect of small interfering RNA 3'-end overhangs on chemosensitivity to thymidylate synthase inhibitors

BACKGROUND Small interfering RNAs (siRNAs) are double-stranded RNAs that effectively inhibit expression of its complimentary target mRNA. Standard siRNAs contain two nucleotide overhangs on their 3' end. While these overhangs are usually comprised of deoxythymidines (dT), it has been shown that any nucleotide can be used on the 3' end without affecting RNAi silencing. RESULTS It was recently ...

متن کامل

Cytotoxicity of 5-fluoro-2'-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate.

Protein in vitro inhibition of thymidylate synthase (5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45) by 5-fluoro-2'-deoxyuridylate requires 5,10-methylenetetrahydrofolate. The cytoxicity of 5-fluoro-2'-deoxyuridine towards cultured L1210 mouse leukemia cells is reduced when intracellular reduced folates are depleted, either by limiting the source in media or by inhibition ...

متن کامل

2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity

The synthesis of oligonucleotides containing 2'-deoxy-2'-fluoro-4'-thioarabinonucleotides is described. 2'-Deoxy-2'-fluoro-5-methyl-4'-thioarabinouridine (4'S-FMAU) was incorporated into 18-mer antisense oligonucleotides (AONs). 4'S-FMAU adopts a predominantly northern sugar conformation. Oligonucleotides containing 4'S-FMAU, unlike those containing FMAU, were unable to elicit E. coli or human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013